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A diffusion-limited-aggregation process, in which clusters coalesce by means of a three-particle reac-
tion, A + A + A — A, is investigated. In one dimension we give a heuristic argument that predicts loga-
rithmic corrections to the mean-field asymptotic behavior for the concentration of clusters of mass m at
time ¢, C,,(t)~m ~'*[In(1)/t]3/%, for 1 <<m <<Vt /In(t). The total concentration of clusters, C(?), de-
cays as C(t)~V1In(t)/t at t— . We also investigate the problem with a localized steady source of
monomers and find that the steady-state concentration C(r) scales as r '[In(r)]'%, r~!, and
r~In(r)]7"/?, respectively, for the spatial dimension d=1, 2, and 3. The total number of clusters, N (z),
grows with time as [In(#)]>/%, t'/2, and ¢[In(¢)] "'/ for d =1, 2, and 3. Furthermore, in three dimensions
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we obtain an asymptotic

solution  for

the steady-state cluster-mass distribution,

C,.(r)~r~'[In(r)]"'®(z), with the scaling function ®(z)=z !/%exp(—z) and the scaling variable

z~m/VIn(r).

PACS number(s): 82.20.Wt, 05.40.+j, 02.50.—r, 82.70.—y

I. INTRODUCTION

Diffusion-limited-aggregation processes have attracted
considerable recent interest in many fields of science and
technology [1]. Typically, aggregation processes can be
described by the binary reaction scheme

K (i)
A;+4 j — A4, e

Here, A; denotes a cluster consisting of i monomers, an
i-mer, and K(i,j) is the rate at which the reaction be-
tween an i-mer and a j-mer proceeds. Much of the un-
derstanding of the kinetics of binary aggregation process-
es is based on the analysis of rate equations and their ex-
act and scaling solutions [1]. For sufficiently low dimen-
sions, the diffusion mechanism is not efficient enough and
fluctuations in the densities of diffusing reactants result in
dimension-dependent kinetic behavior at long times [2].
In a view of the richness of the kinetic behavior ob-
served in the bimolecular model, it is of interest to inves-
tigate more complicated many-particle diffusion-limited-
aggregation processes. In the present study, we focus on
the three-particle reaction scheme
k(i j, k)
Ai+A;+ A4, ——A; i > (1)
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both for homogeneous and inhomogeneous situations,
and outline a generalization for the n-particle case.

We will study the simplest n-particle aggregation pro-
cess for which both reaction rates and diffusion
coefficients do not depend on masses of clusters,
K(i,...,i,)=const and D, =const. A notable feature
of this process is that it reduces to a simple chemical re-
action scheme, n A — A, if one considers only the concen-
tration of clusters. Hence, in the rate equation descrip-
tion, the concentration C(¢) obeys

dC _ .,

i cn, (2)
with y being the rate constant. In the long-time limit,
the concentration behaves as

Cl)=[y(n—1)] Vn=1 (3)

However, the mean-field rate equation approach provides
an accurate description of the kinetics only above the
upper critical dimension d.; when d <d_, the mean-field
theory does not predict correct long-time behavior. For
the aggregation model with constant reactivities and
diffusivities, the upper critical dimension is known:
d.=2/(n—1) [3-5]. Thus, for the binary reaction in one
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dimension, the kinetics is anomalous and the concentra-
tion decays as t ~!/? (see, e.g., [2] and references therein),
while the mean-field result is C(t)~¢~'. On the other
hand, for n >4 the mean-field answer (3) gives a correct
asymptotic description of the kinetics in one dimension.
The three-particle case is marginal in one dimension and
hence a logarithmic correction has been expected [3-5].
After a number of attempts [3-6], the logarithmic
correction of the form C(¢)~VIn(¢)/t has indeed been
observed in a very recent study [7].

In Sec. II we explore the diffusion-limited three-
particle aggregation process (1) in one dimension. We
justify heuristically the appearance of the logarithmic
correction for the concentration of clusters C(¢). More-
over, we obtain a complete scaling description of the
cluster-mass distribution function:

C,.(t)~[In(2)/t]|®P(2) ,

with the scaling function ®(z)=z'"%exp(—z) and the
scaling variable z~mV'In(t) /t.

In Sec. III we examine the three-particle aggregation
process with a spatially localized source of monomers.
We show that the system reaches the steady state for ar-
bitrary spatial dimension d. We present evidence of two
critical dimensions, d, =1, as in the homogeneous sys-
tem, and d°=3, which demarcates the pure diffusive re-
gime (d > 3) from the diffusion-reaction regime (d <3). In
three dimensions, we derive a complete asymptotic solu-
tion for the steady-state cluster-mass distribution.

II. AGGREGATION PROCESS ON A LINE

Consider a linear lattice on which point clusters under-
go a random walk. If n clusters happen to occupy the
same lattice point, they aggregate irreversibly into a sin-
gle cluster whose mass is equal to the sum of the masses
of n parent clusters. This is the n-body particle coales-
cence model (PCM) [8]. The binary PCM in one dimen-
sion has been solved by Spouge [9]; see also [10-14] for
other exact solutions of several generalization of the
PCM. Note that we must keep the lattice spacing Ax
finite, even in one dimension, since otherwise the reaction
will be absent in the n-particle model for all n =3. The
possibility of passing to the continuum limit in the binary
PCM significantly simplifies the analysis (see, e.g.,
(10,11,14]), while for n >3 the spacing Ax, which may be
considered as the size of particles, appears in the final re-
sults.

A simple heuristic argument explains the logarithmic
corrections for the three-body PCM. Let T be a typical
time between successive three-particle collisions in which
cluster takes place. So the reaction rate is proportional
to C/T,

dC C

2w =T 4)
We will estimate T as follows: Consider a reference
frame at rest with respect to an arbitrary “‘target” parti-
cle. When two other particles will be at the origin simul-
taneously, the target particle will die. Now consider all
possible pairs of original particles. In the following, we

will refer to these pairs as imaginary particles. For any
pair, let us choose the location of one partner as the x
coordinate and the other location as the y coordinate of
the corresponding imaginary particle. Thus, we map the
original diffusion process on the one-dimensional (1D)
lattice onto a diffusionlike process on the two-
dimensional (2D) square lattice with the same lattice
spacing Ax. Although imaginary particles do not under-
go a simple random walk, we shall assume that the
asymptotic behavior of this diffusion process is similar to
the one encountered in the simplest 2D random walk.

Now let us estimate the collision time T by considering
an idealized 2D simple random walk of imaginary parti-
cles. The target particle will die when some imaginary
particle will arrive at the origin. The density P(r,?) of
imaginary particles is governed by

OP(r,) _ pAP(r.1), (5)
ot
with the initial condition
P(r,t=0)=C?, (6)

indicating the obvious fact that the density of imaginary
particles is just the square of the density of original ones,
and with the adsorbing boundary condition

P(r=Ax,t)=0. (N

A simple way to find an approximate solution of Egs.
(5)-(7) is to use a quasistatic approximation (see, e.g.,
[15]). In this approximation one solves the steady
diffusion equation and accounts for the time dependence
by a moving boundary condition. This very simple ap-
proach often gives asymptotically exact results (see, e.g.,
[16]). In the present problem, the quasistatic approxima-
tion yields

In(r /Ax)
In(VDt /Ax)
Now the collision time 7" may be evaluated by comput-

ing the flux to the origin and then by equating the flux to
the unity:

P(r,t)=C? (8)

) Ty ypdPUr=8x,0) 4 . )
0 ar
This gives the final estimate,

T~In(1/CAxV27)/27DC? .

Substituting this result into (4), we arrive at the closed-
form approximate differential equation for the concentra-
tion of clusters:

dc ___2mDC__ (10)
dt  In(CAxV?2mw)
Solving this equation at the long-time limit, one gets
172
In(2Dt /Ax?)
~ | — 11
c) 8w Dt an

This result confirms previous suggestions [3-6] of pos-
sible logarithmic corrections to the mean-field power-law
decay. Moreover, it is in a complete agreement with re-
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cent simulational results [7]. A similar logarithmic
correction has been found in the binary PCM in two di-
mensions, C(t)~In(Dt/Ax?)/Dt [17,8,18]. From these
findings for two- and three-body PCM’s in their critical
dimensions, d. =2 and d,=1, respectively, one can ex-
pect the appearance of similar logarithmic corrections for
the n-body PCM at the corresponding critical dimension
d.=2/(n—1):

C(t)~[In(Dt /Ax?) /Dt ]/ n =1

Very recently, a similar result has been established by a
renormalization group calculation for the n-particle an-
nihilation process n 4 —0 (see [19]). Notice also that for
d <d, dimensional analysis suggests a power-law decay
with the exponent dependent on d and independent on n,
C(t)~(Dt)" 42

Let us now consider the three-body aggregation pro-
cess (1). On the mean-field level, the process is described
by the (generalized) Smoluchowski equation. For con-
stant reactivities, the Smoluchowski equation has the
form

e 3> ¢ c.—3C,C?, (12)

i+j+k=m

with C=3/2,C;. Notice that in Eq. (12) we set the reac-
tion rate equal to 1 by an appropriate choice of units.

For the monodisperse initial conditions, C;(0)=N,§;,,
one can find the solution to Eq. (12) (see [4]). The densi-
ties of even-mass clusters vanish due to our choice of ini-
tial data, while the odd-mass densities are

Fm+1)
Cream = C(L)T(m+1)

m

C

I—N—O , (13)

where I' is the I" function. For example, the concentra-
tions of monomers and clusters are given by

C,=Ny(1+4N3)73*% | C=Ny(1+4N%)"V2 . (14)

Notice that in the long-time limit the cluster-mass dis-
tribution (13) exhibits a scaling behavior of the form

C? exp(—2z)
Ciliogm=— —_ 15)
142 Ny, Vmz (

with the scaling variable z, z=mC /N,. Equations (13)
and (15) show that the concentration decays as
Ciiam~m V27374 for 1<<m <<V't. The exponents
describing the scaling behavior might be obtained
without appealing to the complete solution. For exam-
ple, the exponent describing the time dependence,
Cit2m~1t 3’4, can be derived by solving Eq. (12) directly
for small m.

In analogy with the analysis of the chemical reaction
scheme, 3 4 — A, at the upper critical dimension one can
suppose that the aggregation reaction process (1) at
d=d_.=1 should be described by improved rate equa-
tions:

45 _
a =

itj+tk=m

C:C;C,—3C,,C?, (16)

with L being the logarithmic factor
L=In(1/CAxV27)/(sD) .

Upon summing equations (16) over all m, one can repro-
duce Eq. (10) for the cluster concentration, thus provid-
ing a useful check of self-consistency.

By applying a generating function technique, one can
find an asymptotic solution to the modified Smolu-
chowski equation (16). The concentrations are given for-
mally by the same expression (13), but with the modified
monomer density

3/4
In(2Dt /Ax?)

17
87Dt (17

Cl =N0_1/2

Both the scaling form and the scaling variable are identi-
cal to the corresponding mean-field result (15), although
the normalization factors and widths of distributions
differ by logarithmic factors.

A straightforward generalization to the n-body PCM
shows that at the critical dimension d =d,=2/(n—1),
the cluster-mass distribution exhibits scaling behavior of
the mean-field form [4]:

C? —n— 1 -
z (n—2)/(n l)e z

1

n—1

Citn—nm(t)= ,  (18)

N,T

with the scaling variable z,
z=mC/Ny~m[In(Dt /Ax?)/Dt]"/" 1V |

In particular, the concentration of monomers decays as

n— 2
In(Dt /Ax?) |V 7V

G~ Dt

(19)

Thus, for n-body PCM’s we have obtained the scaling
description of the cluster-mass distribution function. Our
approach is heavily based on the assumption of equal
diffusivities of the reactants. (The second assumption of
equal reactivities follows directly from the assumption of
equal diffusivities since “‘sizes” of clusters in the PCM are
the same.) However, from our results one can forecast
some features of the general case. Consider, for example,
the three-body PCM with the cluster diffusion coefficients
D,, related to their mass m by D,, ~m ~°. Since the typi-
cal mass of the cluster grows inversely proportional to
the total concentration of clusters, m,,, ~C ~1, one can
insert an estimate for the typical diffusion coefficient,
Dtyp~mt;5~C5, into expression (11) for the total con-
centration of clusters. This yields the following heuristic
estimate for C(z):
1/(2+8)

In(t) ’ 20)

C(t)~

but such an approach cannot predict the scaling form of
the cluster-mass distribution function.

III. AGGREGATION PROCESS
WITH A LOCALIZED STEADY SOURCE

In this section we consider n-body PCM with a steady
spatially localized monomer input. We again focus on
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the three-particle case and also write some final results
for arbitrary n. Let the source of monomers be placed at
the origin of d-dimensional space and J be the strength of
the source. Within the continuum approximation, the
concentration of clusters at time ¢ and at distance r from
the source, C(r,1), satisfies the reaction-diffusion equation

ég%ﬁl=DACUJ)—DR+J&rL 21)
Here, DR is the reaction term: R =C3, —C?3/In(C), and
C't%4 for d>1, d=1, and d <1, respectively. For
d > 1, the reaction term has the mean-field form; for the
marginal case d =1, the form of the reaction term has
been derived in Sec. II (we ignore numerical factors and
set Ax =1 by an appropriate choice of the length scale);
and for d <1, one can choose the reaction term of the
form C'*2/?since it gives the correct long-time decay for
the homogeneous system, C(¢)~(Dt) ™ 4/2.

For the binary PCM, a qualitative investigation of
similar reaction-diffusion equations has been performed
in [12]. Following the same line of reasoning, let us as-
sume that the system reaches the steady state and try a
solution of the power-law form. By inserting such a form
into the governing equation, one finds that dimension
d =3 also plays a role of critical dimension in the present
problem. For d >3, clusters do not interact far away
from the source and the concentration decays as r ¢ "%/,
i.e., as in the limit of no reaction. The reaction leads to
the renormalization of the strength of the source but does
not change the behavior qualitatively. In other dimen-
sions, the reaction is relevant at all scales, and far away
from the source C (r) behaves as

r 1 In(r)]" V2% ifd=3

71 .
Clr)~ r if 1<d <3 22)

rin(r)]'? ifd=1
rdifd<1.

The critical cases d =3 and 1 have been treated separate-
ly. Since we expected logarithmic corrections to the
power-law behavior C (ry~r~! for 1<d <3, we tried a
solution of the form C(r)~r ~![In(#)]", inserted this form
into Eq. (21), and finally found the exponent v by asymp-
totically equating the most significant terms.

Notice that the system with a localized source but
without reaction reaches the steady state only for
sufficiently large spatial dimension, d >2. On the other
hand, the system with reaction reaches the steady state
for any d. Notice also the appearance of logarithmic
corrections to the power-law behavior in two critical di-
mensions, d, =1 and d°=3: The former results from the
logarithmic factor in the reaction term, while the latter
reflects the fact that at d =d ¢, the reaction just becomes
relevant.

Since clusters perform a random walk and since the
source was turned on at t=0, clusters will propagate
diffusively up to the distance of the order V't. Therefore,
at r <Vt the concentration of clusters approaches the
steady-state limit given by Eq. (22); on the other hand,
C(r)—0 rapidly for r >V't. Hence, the total number of
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clusters, N(t), may be estimated from the relation
N()~ [¥r4='C(r)dr. This yields

t ifd>3

t[In()]"1% ifd=3

t'@D72 i 1<d <3 (23)
[In(n)]?? ifd=1

In(z) ifd<1.

N(t)~

A straightforward generalization to the n-body PCM
shows that, again, two critical dimensions d, and d°
demarcate different behaviors: d,=2/(n—1) and
d‘=2n/(n—1). For the steady-state cluster concentra-
tion, one finds

P9 i d>dc

r (] % ifd=d°

Cin~{r % ifd <d<d" 24)
r %l ifd=d,
r ifd<d,

while the total number of clusters scales as

t ifd>de¢
()] “? ifd=d°
Ny~ 1197%" it a <d<de 25)

[In()]4? if d=d,
In(¢) if d <d, .

Consider now the behavior of the steady-state concen-
trations C,,(r), for the three-body PCM in the most in-
teresting three-dimensional (3D) case. The concentra-
tions C,,(r) obey the reaction-diffusion equations

d 2d

C
dr? r dr

itjtk=m

=—(J/D)§,,,8(r) . (26)

C,C;C,—3C,C?

From these equations one can subsequently find asymp-
totic solutions for the total cluster concentration

C(ry~r '[4In(nN]~"2, 27
for the concentration of monomers

C,(r)~r in(r)] 34, (28)
etc. These results suggest the ansatz

C,(r)=F, (p)/r, (29)

with p=In(r) for the behavior of C,, (r) for general m.
Substituting this ansatz into the governing equation,
we obtain

dF, ~d°F, s
dp dp? i+j+k=m

F,F;F,—3F,F?, (30)

with
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F= i F,(p)=rC(r)=(4p)" 1% .

Far away from the source, one can omit the second term
in the left-hand side of this equation. After replacement
of all F,,(p) by C, (1), the resulting approximate equation
for source-induced aggregation at the steady state be-
comes identical to Eq. (12) for irreversible aggregation,
with p, p=In(r), playing the role of time . For the latter
problem, the cluster-mass distribution C,,(¢) approaches
the scaling form not only in the monodisperse case but
also for arbitrary (rapidly vanishing) initial conditions [4].
In the general case, the scaling solution still has the form
(15), where the parameter N is equal to the total mass of
the system, No=3 % _,mC, (¢) [4]. Since for the former
problem the density of mass M(r), M(r)=3 7 _,mC,(r),
satisfies the Laplace equation
d* 24
D (drz + S dr M(r) Jé(r), (31)

one gets M (r)=J /4mwDr. Therefore,

> mF,(p)=rM(r)=J /47D

m=1
will play the role of N, in the scaling solution. Combin-
ing all these findings, we finally obtain that in the scaling
limit
m—ow , r—ow , z=27Dm /JVIn(r)=finite , (32)

the steady-state cluster-mass distribution reaches the
scaling form

7D  exp(—2z)
Viwrz
Thus, in the steady state in three dimensions, the typical
mass of clusters at distance r from the source grows unex-
pectedly slowly, m, ~V'In(r).

From the steady state (33), one can find the following
limiting behavior:

Ciiam(r)= (33)

~ Jrin(r)

172

Cliom(r)= m 12 " In(r)] 3/ (34)

T

for m <<JV'In(r)/D. Notice that in the steady state the
total cluster concentration C(r) does not depend on the
strength of the source, J, while all other concentrations
C,,(r) do depend on J.

For the general n-particle PCM, a complete asymptotic
solution for the steady-state cluster-mass distribution
may be found at the critical dimension d =d ¢ following

3237

the procedure used for the three-body case. By applying

the ansatz C,,(r)=F,, (p)/rd‘, one can recast the steady-
state reaction-diffusion equation to the n-particle Smolu-
chowski equation. Making use of the scaling solution of
the latter equation (18), one obtains

C1+(n—1)m(r)~[r ln(r)]_dcz —(n=2)/(n—1), 2z , (35)

with z~m In(r)"1/" ~1 being the scaling variable.

In conclusion, we have obtained the complete asymp-
totic solution for the steady-state cluster-mass distribu-
tion for the n-particle aggregation model with a spatially
localized source of monomers in the critical dimension
d=d°=2n/(n—1); the binary case corresponds to d =4,
while the ternary case corresponds to d =3. The solution
exhibits an unexpectedly slow logarithmic growth of the
typical mass of clusters versus the distance r from the
source: mtyp~ln(r)1/ n=1_ For sufficiency large dimen-
sions d >d°, we have found that clusters do not interact
far away from the source and hence concentrations decay
diffusively as r ' ~2), Therefore, for d >d° the reaction
leads to the renormalization of the strength of the source
but does not change the behavior qualitatively. For
sufficiently small dimensions, d°>d >d_, the steady-state
cluster-mass distribution is expected to be of the scaling
form C,,(r)~r B®(mr~*). From two known moments
of the cluster-mass distribution

® -d
Cin= 3 C,(r)~r =

m=1

[see Eq. (21)] and

M(r)= § mCm(r)~r'(d'2) R

m=1

one can find the exponents a and B, a=d°—d and
B=d.+d°—d. However, the scaling function ®(mr %
satisfies a rather difficult integro-differential equation
which I could not solve. Further progress is also possible
in one dimension where exact solutions for the total den-
sity of clusters and for the densities of clusters of small
mass may be readily found and behaviors even in the vi-
cinity of the source may be investigated.
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